
 [image: Cover]

A QUICK GUIDE TO CREATING EPUBS FROM PRINTED BOOKS

Index

 0. What's this about

 1. The tools

 2. Scanning

 3. The corrections

 4. Formatting the ODT

 5. Formatting the EPUB

 6. A note on footnotes

0. What's this about

In this guide I'll try to explain how to create an epub ebook starting from a printed book (or image files). Epubs are easily converted to kindle ebooks, and between the two formats they cover most (if not all) of the readers available.

I've been doing this for a few years and I've learned some tricks, which I want to share with you. I've also learned that there's quite many people who are doing the same thing: they're the ones to thank for most of the unofficial ebooks you find online. The job is relatively easy once you learn how to do it, and it can take as little as a few hours – for a short, simple book and with a good scanner – to dozens of hours for complicated ones with varying formatting, lots of footnotes, bad printing, a slow scanner and so on.

I have never made any money from it.

1. The tools

What you will need.

- A book. Shocking, I know. Though the guide works as well if you have someone else doing the scanning for you, and there are quite many image-pdf files floating around the web.

- A scanner. I've always used super-cheap ones, which do a decent job. You can spend as much money as you want on them. The fanciest ones are indeed much faster and don't require pushing the book against the glass (and thus potentially damaging it). However from my experience the time you save on scanning is really not much, when you compare it to the rest of the operations. The most time-consuming part is certainly not scanning the book. Professional copy machines, such as the ones used in schools or libraries, are also a faster option. If you can sacrifice the book you can cut the pages loose and the copy machine can scan it recto/verso.

- An OCR software (Optical Character Recognition). This is where the magic happens, and the images turn into text. I use Abby Finereader and it works fine. The Mac OS version doesn't have the same versatility of the Windows one, but despite that AFR remains probably the best OCR software available. Finding a cracked version shouldn't be too difficult.

- A text-editing software. I use Open Office. Others suggest using Atlantis, for which you don't need epub-conversion add-ons. For Mac OS there's Pages, a text-editor which creates very clean epub files.

- In case you use Open Office, you need a few add-ons: Pepito Cleaner https://pepitoweb.altervista.org/pepito_cleaner/index.php and Writer2Epub https://writer2epub.it/download/ .

- Epub-editing software: Sigil https://sigil-ebook.com/ and Calibre https://calibre-ebook.com/download (and yes, it's much better to have them both).

- A software for automatically clicking through repetitive tasks. This can be very useful, and at times indispensable. I use PTFB. You can torrent it with working crack here https://www.google.com/search?q=2D8739EA84E822D09A81BD5F3C01AAE8BA9DC266

- It is not a tool, strictly speaking, but https://www.mobileread.com/forums/ is the place to go for any doubts on the creation of ebooks. There's tons of very useful info, including an awesome thread just for regular expressions to use on Sigil, and from my experience the people there, besides being incredibly knowledgeable, are very friendly and always willing to help.

2. Scanning

The books should be clean and without any signs, and especially without any underlinings or writing on the printed area. Erasing them before you start scanning might seem like a chore, but it will save you much time and headaches later on.

Scan at 300 dpi gray-scale.

If you use a normal, flat scanner, be sure to press the book hard against the surface of the scanner, so as to avoid distortion in the images. Also don't move it while scanning. If you happen to move it repeat the scanning. Finereader has an option for automatically keep scanning, without having to click again for each page.

Then select the language or languages you want and feed the images to the OCR. Scanning and reading can be done in one single step with Finereader.

If your book features some special characters which are not part of the default alphabet and which are repeated many times, you can train Finereader to recognize them (very common, for example, is some publishers using “í” instead of “ì”). Here is a short explanation on how to do it https://guides.nyu.edu/c.php?g=823477&p=5914850.

If you don't scan using Finereader you get image files, most typically JPEGS or PDFs, which you can then feed to AFR.

3. The corrections

This is one of the crucial parts. Once Finereader has finished “digesting” the book, you have to manually check each page for errors (and, very important, check that you did indeed scan all of the book's pages). Also, remove any white pages, because they can create problems later on.

Finereader assigns four “area-types” to the images it reads (text, table, image, barcode). At times the type it chooses might not be the best one for you, so check that too. Also check the image-areas cover the right area. Finereader, anyway, has quite many options you can fiddle around with.

The characters which the software is not sure of are highlighted (by default in light-blue), and the words that the spellcheck doesn't recognize are underlined in red. Arm yourself with some patience, and slowly go through all the pages. This is where a big part of the difference between a good and a bad ebook is made, as most of the errors do indeed show up here. The Mac version of AFR doesn't allow editing at this stage, so any modification has to be done at the next stage.

This is also where I set up parts of the formatting, using some personal code. I type in some specific strings before each part which I want to come up with special formatting in the final file. For example, I write XXX before all the titles that I will turn to main headings (H1 in html, such as chapter titles), YYY for sub-headings, +++ before the paragraphs that have a bigger margin above them, CIT and TIC before and after the quotations, if those paragraphs have a specific format (as they do in most cases), and so on. This makes all those parts easier to identify later in the process. Note that this step is not needed for headings that already start with a specific string (most typically “chapter”, “part”, or “number+period”). Make sure you choose unique strings, that are not found elsewhere in the book.

This is also where I set up the footnotes, if they're at the bottom of each page and not at the end of the book or of the chapter. For footnotessee the specific section below. AFR is not particularly good at managing footnotes on its own.

Once you've checked all the pages the worst is over, and I save the document. For reasons I haven't really understood, I think I've found it's better to save the document as HTML, and then to open the HTML file with Open Office and save it as ODT. Don't delete the Finereader document. It will be very useful as reference for the next steps. Only get rid of it once the book is done.

You can also save the file directly as epub, and skip step number 3. In that case you obviously need to do most of the editing from the epub file.

4. Formatting the ODT

Once you got the ODT file, run Pepito Cleaner (which is basically a pre-compiled regex bundle) and check the major and most common imperfections: lines that start with a lowercase letter, lines that end without punctuation, dashes within the words, space before punctuation, and a few more. Then search, still from Pepito, for all the lines that start with XXX (from the third tab in Pepito search for “^XXX”) and turn them into H1 headings; do the same for H2 and lower, if there's any. Then bulk-remove those markers (from Open Office's search and replace tool, checking the “regex” box just in case there's some instances of those strings within the text: search for ^XXX and replace with empty field).

Sometimes AFR omits chunks of text, even if it has recognized them. This usually shows up while running Pepito. Be sure to always pay attention to what you're doing, and to check that it all makes sense. Reading parts of the text you're working on can help you detect errors that otherwise would go unnoticed.

Also remove the cover from the ODT file (it works better if you only add it while creating the epub file), and make sure all image files are hosted within the document and are not linked (from Open Office: edit → links → remove links).

The ODT is also the stage where footnotes are inserted, if in the printed book they are listed at the end of each page.See specific section.

At this point run Writer2Epub. The interface has very few options and they are rather self-explanatory. I always choose to have a table of contents automatically created, and to split the files at H1 headings (splitting the file results in interrupting the flow of the text in the final epub file). Select the cover by browsing through your files (if you had saved the file as HTML it should be in the filename_files folder), and be sure to fill in the metadata. The rest is up to you.

The automatically-created table of contents might not be exactly the same as the one in the printed book. You can edit that later on to make it match the original.

5. Formatting the EPUB

Now you have your epub: give it its final touches. First of all, to make things a bit simpler, open it with the Calibre editor and click on tools → remove unused CSS rules. Sigil has a similar tool, but I believe Calibre's is more thorough.

If you saved the epub directly from AFR, there is a bit more editing to be done at this stage. Saving the default searches and the most commonly used CSS styles will spare you a lot of time and many mistakes.

Search for the special strings that you had inserted from Finereader: all the paragraphs that start with “+++” (search: “<p>+++” and “<p>+++” and replace with “<p class="margin-top">” and “<p class="margin-top">”); search for all the text within the CIT/TIC markers and place it within a specifically-classed div (select “regex” from the search tool, search for “<p>CIT</p>(.*?)<p>TIC</p>” and replace it with “<div class="cit">\1</div>”; there could be more, but these are the most common ones. (Note that in the latter case the CIT/TIC markers must not be in italics, because in that case the regex would miss it). You can save these searches so for the next books you don't need to type them in manually. Of course then you need to style these classes from the epub's CSS file. I just give some margin-top to the former and some margin all around for the latter, maybe reducing the font-size a bit too. This is up to you anyway, as is the case with all the styling you can use, adding fonts (very easy from the Calibre editor), and so on.

More default searches that I find useful: replace “ -(\w)” with “ - \1”, and “,” with “,”.

The Calibre editor also makes it very easy to split the epub's XHTML files, which usually comes in handy for the first and the last pages of the book (most typically to have a separate page for the book's flap and/or back cover, for its description, the copyright stuff and so on).

For those books that have an analytical index, Sigil has a very useful tool that automatically creates one, based on a list you provide (tools → index → index editor) . The problem is that populating that list is usually a very long copy/pasting chore, because most of the time the list is very long. This is where the auto-click software comes in handy. Launch it, record the actions while you copy/paste one item, and then click your way through the rest of the index. Once the list is done click on “create index”, and hey!, the analytical index is served. Getting to know exactly how this tool works might take some fiddling around, but it's very easy. Hover over the column titles in the index editor for a quick explanation. Two tips: 1) The index is case-sensitive, so if you want to index words that are not proper names add (?i) before the “text to include” field; 2) The index matches all the strings that contain that string, so if you want “White” to match only “White” and not “SWhite” or “Whites”, use “\WWhite\W”.

At this stage you can also insert some internal links (for references as “see above”, “see page X”, “see chapter Y” and so on). This is easier to do from Sigil, which has a quick option to insert ids and links. Place an id in the position you want to link to, and a link where you want the user to be able to click.

Once this is done comes another thankless and important part, the spellcheck. Both Sigil and Calibre have it, but I like the latter a bit more. Load the spellcheck and manually run through all the words it doesn't recognize. They can be in the thousands, and most of them are false positives. Scroll the list one word at a time. Then do it again, and again until you don't find one single word that shouldn't be there.

And finally the last step is the debugger. Both Sigil and Calibre have one, but Calibre's is much better and more thorough. See what problems it finds and fix them one at a time.

And that's it, the ebook is ready now. What to do with it now is up to you. For English-language books one great website where you can share it is mobilism.org, but creating a torrent is also a viable option.

6. A note on footnotes

Non-fiction books often feature footnotes. Here's how to deal with them.

1) If the notes are at the bottom of each page.

In this case the process starts while correcting the Finereader document. Cut/paste each note from the bottom of the page to the position of its reference within the text, wrapping it within a specific string that you're sure is not used elsewhere in the book. So instead of having the normal flow of the text with some numbers in apex to signal the presence of a note, and at the end of each page the single notes, you get something like “text text###footnote here### text continuing”. This copy-pasting can be made a bit faster with the auto-click software: cut the note, place the cursor where you're going to paste it, launch PTFB, start recording a screen macro, paste the note within the marker-string, stop the recording.

Then follow the steps as I said above, until you get the clean and ready ODT file. At this point launch Open Office's search tool, select “more options” and check “regular expression”, and search for “###(.*?)###. This will select the text contained within those markers.

(Note that this doesn't search through paragraphs: if your note spans more than one paragraph, what you can do is making it one single paragraph, marking the “new line” with a specific string, and then replacing that string, from the epub, with “</p><p>”).

Cut the selection, click on insert → footnote, paste it, and search again. This is where PTFB really becomes useful, and saves you a lot of time. Record a macro of these last operations, and then click your way through the book. Don't do it blindly though, and check you're always actually doing it right. When you're done, use the search and replace tool to remove all instances of the marker-string.

Now the ODT has the footnotes in their place, and Writer2Epub will automatically render them when creating the epub. You can then style them with CSS.

2) If the footnotes are at the end of each chapter or of the book

If they are listed at the end of each chapter you just need some regex wisdom and some search and replace in the epub file. Usually they will be marked by a number in apex (with tags) within the text, and by the same number, in apex or not, before each note. You just need to interlink them, and these are the regexs I use:

Search

<p>^([0-9]{1,})(.*?)</p>

Replace

<p class="footnote">^{\1}\2←</p>

and

search

^([0-9]{1,})

replace

^{\1}

The former links the notes to their references within the text, and the latter links the references to the notes. Before you run the search and replace though, I advise you to count all the instances of the string (Sigil has an option for that), possibly for one chapter at a time to make it easier, and check if the numbers match. Very often there's missing numbers, bad-formatted paragraphs, and so on. Find out where the errors are, fix them, and when everything is set go for it.

These regexs might need some minor tweaking depending on the book, but that's the gist of it. As I said in the introduction, for any doubts check and/or ask on mobileread, or maybe just google “regex cheatsheet”.

If the notes are listed at the end of the book, probably the easiest way is manually cut/pasting them at the end of each chapter, from the epub file, and then doing what I just described above.

Another option, for books with many footnotes, is running AFR twice, once for the text, without the notes, and another time for the notes, without the text. This way you end up with two separate epub files, which then you have to merge and interlink, more or less as said above in case #2. Sigil has a plugin to automatize this task, but doing it manually can be useful for one more check.

[image: Writer2ePub]

Created with Writer2ePub

by Luca Calcinai

OEBPS/Images/w2e.jpg

OEBPS/Images/cover.jpg

